Robust low-rank matrix estimation
نویسندگان
چکیده
منابع مشابه
ROUTE: Robust Outlier Estimation for Low Rank Matrix Recovery
In practice, even very high-dimensional data are typically sampled from low-dimensional subspaces but with intrusion of outliers and/or noises. Recovering the underlying structure and the pollution from the observations is key to understanding and processing such data. Besides properly modeling the low-rank structure of subspace, how to handle the pollution is core regarding the performance of ...
متن کاملOnline Robust Low Rank Matrix Recovery
Low rank matrix recovery has shown its importance as a theoretic foundation in many areas of information processing. Its solutions are usually obtained in batch mode that requires to load all the data into memory during processing, and thus are hardly applicable on large scale data. Moreover, a fraction of data may be severely contaminated by outliers, which makes accurate recovery significantl...
متن کاملRobust Weighted Low-Rank Matrix Approximation
The calculation of a low-rank approximation to a matrix is fundamental to many algorithms in computer vision and other fields. One of the primary tools used for calculating such low-rank approximations is the Singular Value Decomposition, but this method is not applicable in the case where there are outliers or missing elements in the data. Unfortunately this is often the case in practice. We p...
متن کاملImproved Sparse Low-Rank Matrix Estimation
We address the problem of estimating a sparse low-rank matrix from its noisy observation. We propose an objective function consisting of a data-fidelity term and two parameterized non-convex penalty functions. Further, we show how to set the parameters of the non-convex penalty functions, in order to ensure that the objective function is strictly convex. The proposed objective function better e...
متن کاملRobust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition
This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a “low-rank and sparse” matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2018
ISSN: 0090-5364
DOI: 10.1214/17-aos1666